No Measurable Calcium Isotopic Fractionation During Crystallization of Kilauea Iki Lava Lake

Hongming Zhang1,2,3, Yang Wang2, Yongsheng He2, Fang-Zhen Teng4, Stein B. Jacobsen3, Rosalind T. Helz2, Bruce D. Marsh6 and Shichun Huang7

1 State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an, China, 2 State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, China, 3 Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA, 4 Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA, 5 United States Geological Survey, Reston, VA, USA, 6 Department of Earth and Planetary Science, Johns Hopkins University, Baltimore, MD, USA, 7 Department of Geoscience, University of Nevada, Las Vegas, Las Vegas, NV, USA

Abstract In order to investigate possible Ca isotopic fractionation during basaltic magma differentiation, we measured Ca isotopic compositions of lavas recovered from Kilauea Iki lava lake at Hawaii. This set of lavas record the whole crystal fractionation history of basaltic magma, ranging from olivine accumulation/fractionation to multiple phase crystallization, including plagioclase and clinopyroxene. Our results show no detectable Ca isotopic variation in all measured Kilauea lavas at a precision of ±0.07‰ for 44Ca/40Ca (δ44/40Ca = 0.80 ± 0.08, 2 SD, n = 19). Using such observation and published intermineral Ca isotopic fractionation factors, a Monte Carlo approach is used to estimate the mineral-melt Ca isotopic fractionation factors. We found that Ca isotopic fractionation between clinopyroxene and basaltic melt is small, with δ44/40Caclin-peridotite = 0.04 ± 0.03 at 1200 °C. To the best of our knowledge, this is the first estimated mineral-melt Ca isotopic fractionation factor reported. We use this estimated δ44/40Caclin-melt and intermineral Ca isotopic fractionation factors to investigate Ca isotopic effects during mantle partial melting under 1–2 GPa. Our simulations show that the largest 44Ca/40Ca effect, up to +0.3‰, is achieved in large degree melting residues during fractional and dynamic melting. In contrast, partial melts show negligible 44Ca/40Ca isotopic effect, <0.07‰.

1. Introduction

Calcium is the fifth most abundant element in the Earth, with six stable isotopes ranging from 40 to 48 (Coplen et al., 2002). Recent studies show large mass-dependent Ca isotopic variations in silicate rocks with δ44/40Ca (δ44/40Ca = (44Ca/40Ca)sample/(44Ca/40Ca)NIST915a – 1) × 1,000) ranging from −0.08 to 1.68 (Figures 1 and S1). What causes such large Ca isotopic variations in silicate rocks?

The variation in silicate rocks may reflect interlab difference (see He et al. 2017, Figure 8). For example, the reported δ44/40Ca values for USGS standard sample DTS-1 range from 1.49 to 1.68 (Figure 1). However, the large δ44/40Ca variation in igneous rocks is not only a result of large interlab difference. Several mechanisms have been proposed for the observed Ca isotopic variation in silicate rocks (Figure 1): (1) some reflect equilibrium isotopic fractionation during magmatic processes (Feng et al., 2014; Huang et al., 2010; Kang et al., 2016), (2) some are attributed to the recycling of surface material into the deep mantle (Huang et al., 2011), (3) some might reflect kinetic isotopic effect during melt-rock reactions (Zhao et al., 2017), and (4) some may be attributed to low-temperature alteration effects (such the high δ44/40Ca in DTS-1; Huang et al., 2010). Knowledge about the Ca isotopic effects produced by magmatic processes is required to use δ44/40Ca as an important geochemical tracer in the field of mantle geochemistry and igneous petrology.

In this paper, we attempt to constrain the Ca isotopic fractionation behavior during basalt crystal fractionation and mantle partial melting processes, two important processes that produce the geochemical variations in basalts. Amini et al. (2009) observed large δ44/40Ca variation in igneous rocks (δ44/40Ca = 0.61–1.49, n = 22), and proposed that partial melting and crystal fractionation may be responsible for the observed large δ44/40Ca variation. However, due to the lack of knowledge of mineral-melt Ca isotopic fractionation factors, they were not able to evaluate the Ca isotopic effects caused by these two processes.

Based on the large Ca isotopic fractionation between coexisting orthopyroxene and clinopyroxene in...
mantle peridotites ($\Delta^{44/40}$Ca$_{\text{peridotite-melt}} = 0.36–0.75$), Huang et al. (2010) suggested that Ca isotopes might be fractionated during partial melting process. This idea has been shared by several recent publications (Kang et al., 2016, 2017; Zhu et al., 2018). Using arbitrarily selected peridotite-melt Ca isotopic fractionation factors ($\Delta^{44/40}$Ca$_{\text{peridotite-melt}} = 0.10–0.25$), Kang et al. (2016, 2017) argued that the high $\delta^{44/40}$Ca in some peridotites, up to 1.5, which is significantly higher than bulk silicate Earth estimate of 0.89 to 1.09 (Figure 1; Huang et al., 2010; Kang et al., 2017; Simon & DePaolo, 2010), can be produced by large degrees ($F = \sim 25–30\%$) of partial melting. As another example, Zhu et al. (2018) reported low $\delta^{44/40}$Ca, 0.75–0.86, in N-MORB from southern Juan de Fuca ridge. Following the same approach of Kang et al. (2017), Zhu et al. (2018) argued that the observed low $\delta^{44/40}$Ca in N-MORB is caused by mantle partial melting.

The peridotite-melt Ca isotopic fractionation factor is important in understanding Ca isotopic fractionation during partial melting. However, the peridotite-melt Ca isotopic fractionation factor has not been determined by experiments or theoretical calculations (Kang et al., 2017). Equilibrium intermineral Ca isotopic fractionation has been systematically studied using first-principles calculations (Feng et al., 2014; Wang et al., 2017; Zhou et al., 2016); however, such approach has not been extended to calculate the mineral-melt isotopic fractionation. In this paper, we will take a different approach to attack this problem by using a
combination of Ca isotopic measurements of natural basalts and intermineral Ca isotopic fractionation factors obtained from first-principles calculations and an ionic model. A similar method was used by Sossi et al. (2012) to study the Fe isotopic variations in the Red Hill intrusion in southern Tasmania. Basalts from Kilauea Iki lava lake, Hawaii, USA, were produced by closed-system crystal-melt fractionation, and their crystal fractionation history is well recorded (Helz, 1987). Combined with intermineral Ca isotopic fractionation factors, involving clinopyroxene, pigeonite, and plagioclase, δ\(^{44/40}\)Ca data of Kilauea Iki lava lake basalts allow us to calculate the mineral-melt Ca isotopic fractionation factors using mass balance relationships. Then, we will apply these mineral-melt Ca isotopic fractionation factors to constrain possible Ca isotopic effects during mantle melting. Our results provide a first-order “roadmap” to use Ca isotopes in the field of petrology and mantle geochemistry, and it must be checked with future studies using high-temperature experiments.

2. Geological Settings and Samples

Kilauea Iki lava lake was formed during the 1959 summit eruption of Kilauea volcano located in the southeast of Hawaii Island (Figure 2). This lava lake is a perfect place for studying magma differentiation, because it cooled and crystallized as a closed system from 1960 to the mid-1990s. At the same time, the interior was sampled by coring from the surface of the lake to the bottom. Its crystallization sequence and thermal history have been well recorded (Helz, 1987, 2012; Helz & Thornber, 1987; Teng et al., 2011). Their major and trace element contents, and other stable isotopic compositions, such as Li, Mg, Fe, Si, Zn, and Ga, have been well studied (Chen et al., 2013; Greaney et al., 2017; Helz, 2012; Helz et al., 1994; Kato et al., 2017; Pitcher et al., 2009; Teng et al., 2007, 2008, 2010, 2011; Tomascak et al., 1999). Some elements (Fe, Si, Zn) show detectable whole-rock isotopic variations, while others (Li, Mg, Ga) do not.

Magma differentiation of Kilauea Iki lava lake magma has created a variety of rock types, ranging from olivine-rich cumulates, through olivine tholeiites, to ferrodiabase and more silicic veins, with MgO contents decreasing from 27.41 to 2.37 wt %. CaO contents increased from 5.21 to 12.30 wt % and then decreased to 6.08 wt %. Samples studied include two scoriae from a fire fountain (Iki-22 and Iki-58) and eleven drill core samples from the interior of the lake. A detailed description of these Kilauea Iki samples is given in Pitcher et al. (2009). The scoriae consist of olivine phenocrysts and glass. Most core samples are olivine-phyric basalts. Other core samples with low MgO content (<5 wt %) are differentiated segregation veins. Sample KI75–1-75.2 is a ferrodiabase segregation vein. Two samples, KI67–2–85.7 and KI81–2–88.6, formed from melt found within segregation veins that had partly crystallized. USGS standard samples, BHVO-1 and -2, which are from the Kilauea 1919 eruption, were also included. We also analyzed one Kilauea dacite sample (the Puna dacite; Teplow et al., 2009). This sample was recovered as a dacite melt at the Puna Geothermal Venture Wellfield. It has low MgO content (2.29 wt %) relative to other Kilauea Iki samples and is interpreted as the final product of fractional crystallization of the magma from Kilauea.

3. Analytical Methods

Calcium isotopic analyses were performed at China University of Geosciences, Beijing. Detailed Ca isotopic analytical procedure at China University of Geosciences, Beijing, was reported in He et al. (2017). Sample powders containing ~200 µg Ca were dissolved in 3:1 (v/v) mixture of concentrated HF and HNO\(_3\) in 6-mL Teflon beakers at 100 °C for three days. Then, the sample solutions were dried down and evaporated with 0.5 mL concentrated HCl at 120 °C twice. Finally, they were dissolved in 0.5 mL 2.5 N HCl. After dissolution, an aliquot of sample solution containing 30-50 µg Ca was mixed with an appropriate amount of \(^{43}\)Ca-\(^{48}\)Ca double spike (Table S1), so that the \(^{40}\)Ca/\(^{48}\)Ca in the mixture is ~8.7. Ca was separated using a cation exchange chromatography technique with AG50W-X12 Bio-Rad resin. Columns were precleaned and conditioned with 10 mL 6 N HCl, 5 mL MQ water, and 2 mL 2.5 N HCl. Samples were loaded using 50 µL 2.5 N HCl, and matrix elements were removed using 5 mL 2.5 N HCl. Finally, Ca was collected using 3.5 mL
2.5 N HCl. All samples were passed through the column twice. The total Ca recovery after two column chemistry is ~90%. Because samples have been spiked before column chemistry, and the Ca isotopic fractionation on the columns also follows the exponential law (Zhu et al., 2016), the 90% recovery rate does not affect the measured Ca isotopic compositions (He et al., 2017). The total Ca blank was 10 ng, negligible compared to the 30–50 μg Ca used for each measurement. Ca isotopic analyses were performed on a Thermo-Finnigan Triton Plus TIMS using a double Re filament assembly. This instrument is equipped with two customized Faraday cups, L5 for 40Ca and H4 for 48Ca, allowing static measurement of masses from 40 to 48 amu. Purified Ca was loaded using 3% HNO$_3$, and measured with a total current of 100–300 pA and a 40Ca signal between 8 and 30 V. Each collection contains 120 cycles, grouped in eight blocks. Data deduction was performed of flaine using an iterative method and the exponential fractionation law (Russell et al., 1978). Ca isotopic ratios are reported as δ values relative to NIST SRM 915a ($\delta^{44/40}$Ca = [(44Ca/40Ca)sample/(44Ca/40Ca)SRM915a – 1] × 1000). Each sample has been measured multiple times (usually 8 times), and the mean values and two standard errors are reported. Long-term reproducibilities at China University of Geosciences, Beijing, lab are about ±0.07 and ±0.03 for $\delta^{44/40}$Ca and $\delta^{44/42}$Ca, respectively, which are estimated based on multiple measurements of ten rock standards (He et al., 2017). Figure S2 shows the comparison of $\delta^{44/40}$Ca of standard samples measured in this lab (He et al., 2017) and the published values. The good agreement demonstrates the robustness of our analytical methods.

4. Results

Ca isotopic compositions of 16 Kilauea samples, including USGS standards BHVO-1, -2, and the Puna dacite, are reported in Table 1, and their individual measurements are in Table S4. The $\delta^{44/40}$Ca, $\delta^{44/42}$Ca, and $\delta^{42/40}$Ca values of our studied samples plot on the mass-dependent exponential fractionation lines (Figure 3), indicating insignificant accumulation of radiogenic 40Ca. All measured Kilauea samples have homogeneous $\delta^{44/40}$Ca within uncertainty, ranging from 0.74 ± 0.04 to 0.87 ± 0.06 with a mean of 0.80 ± 0.08 (2 SD, n = 19, including duplicate measurements). There is no difference between Kilauea Iki samples and others from Kilauea (BHVO-1, -2, and the Puna dacite).

Table 1

Stable Ca Isotopic Compositions From Kilauea, Hawaii

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Weight (mg)</th>
<th>$\delta^{44/40}$Ca</th>
<th>2 SE</th>
<th>$\delta^{44/42}$Ca</th>
<th>2 SE</th>
<th>$\delta^{42/40}$Ca</th>
<th>2 SE</th>
<th>MgO (%)a</th>
<th>CaO (%)a</th>
<th>Sc (ppm)b</th>
<th>Sr/Ndb</th>
<th>nc</th>
</tr>
</thead>
<tbody>
<tr>
<td>KI81-1-169.9</td>
<td>5.81</td>
<td>0.77</td>
<td>0.02</td>
<td>0.40</td>
<td>0.03</td>
<td>0.43</td>
<td>0.03</td>
<td>26.9</td>
<td>5.3</td>
<td>18.3</td>
<td>23.6</td>
<td>8</td>
</tr>
<tr>
<td>KI67-3-6.8</td>
<td>5.72</td>
<td>0.79</td>
<td>0.04</td>
<td>0.40</td>
<td>0.04</td>
<td>0.39</td>
<td>0.05</td>
<td>25.8</td>
<td>6.3</td>
<td>19.6</td>
<td>19.2</td>
<td>8</td>
</tr>
<tr>
<td>KI81-1-210.0</td>
<td>3.42</td>
<td>0.86</td>
<td>0.03</td>
<td>0.38</td>
<td>0.02</td>
<td>0.47</td>
<td>0.03</td>
<td>24.5</td>
<td>7.7</td>
<td>22.1</td>
<td>21.5</td>
<td>8</td>
</tr>
<tr>
<td>Iki-22</td>
<td>3.71</td>
<td>0.81</td>
<td>0.05</td>
<td>0.40</td>
<td>0.04</td>
<td>0.41</td>
<td>0.03</td>
<td>19.5</td>
<td>8.3</td>
<td>24.2</td>
<td>19.5</td>
<td>8</td>
</tr>
<tr>
<td>KI79-3-150.4</td>
<td>2.76</td>
<td>0.80</td>
<td>0.03</td>
<td>0.37</td>
<td>0.03</td>
<td>0.43</td>
<td>0.02</td>
<td>13.5</td>
<td>10.8</td>
<td>30.6</td>
<td>22.7</td>
<td>8</td>
</tr>
<tr>
<td>KI75-1-38.9</td>
<td>3.99</td>
<td>0.76</td>
<td>0.02</td>
<td>0.34</td>
<td>0.02</td>
<td>0.42</td>
<td>0.03</td>
<td>12.5</td>
<td>10.5</td>
<td>-</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>KI67-3-39.0</td>
<td>3.17</td>
<td>0.80</td>
<td>0.03</td>
<td>0.40</td>
<td>0.05</td>
<td>0.41</td>
<td>0.05</td>
<td>10.7</td>
<td>10.7</td>
<td>31.4</td>
<td>19.2</td>
<td>8</td>
</tr>
<tr>
<td>Iki-58</td>
<td>3.54</td>
<td>0.78</td>
<td>0.04</td>
<td>0.37</td>
<td>0.04</td>
<td>0.42</td>
<td>0.03</td>
<td>8.1</td>
<td>11.9</td>
<td>32.6</td>
<td>18.1</td>
<td>8</td>
</tr>
<tr>
<td>KI75-1-121.5</td>
<td>3.25</td>
<td>0.76</td>
<td>0.03</td>
<td>0.34</td>
<td>0.03</td>
<td>0.41</td>
<td>0.03</td>
<td>7.8</td>
<td>11.0</td>
<td>31.9</td>
<td>16.7</td>
<td>8</td>
</tr>
<tr>
<td>KI67-3-80.7</td>
<td>2.24</td>
<td>0.78</td>
<td>0.02</td>
<td>0.39</td>
<td>0.02</td>
<td>0.40</td>
<td>0.02</td>
<td>7.7</td>
<td>11.0</td>
<td>-</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>BHVO-2</td>
<td>2.90</td>
<td>0.80</td>
<td>0.03</td>
<td>0.37</td>
<td>0.01</td>
<td>0.42</td>
<td>0.03</td>
<td>7.2</td>
<td>11.4</td>
<td>32.0</td>
<td>15.6</td>
<td>7</td>
</tr>
<tr>
<td>BHVO-2 duplicate</td>
<td>2.97</td>
<td>0.80</td>
<td>0.04</td>
<td>0.36</td>
<td>0.04</td>
<td>0.44</td>
<td>0.02</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHVO-2 triplicate</td>
<td>4.61</td>
<td>0.84</td>
<td>0.03</td>
<td>0.39</td>
<td>0.03</td>
<td>0.45</td>
<td>0.02</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHVO-1</td>
<td>3.57</td>
<td>0.77</td>
<td>0.04</td>
<td>0.36</td>
<td>0.03</td>
<td>0.41</td>
<td>0.03</td>
<td>7.2</td>
<td>11.4</td>
<td>31.8</td>
<td>16.1</td>
<td>7</td>
</tr>
<tr>
<td>KI75-1-75.2</td>
<td>3.90</td>
<td>0.80</td>
<td>0.06</td>
<td>0.34</td>
<td>0.02</td>
<td>0.45</td>
<td>0.04</td>
<td>5.8</td>
<td>10.0</td>
<td>32.8</td>
<td>16.0</td>
<td>8</td>
</tr>
<tr>
<td>KI67-2-85.7</td>
<td>2.76</td>
<td>0.87</td>
<td>0.05</td>
<td>0.40</td>
<td>0.04</td>
<td>0.48</td>
<td>0.04</td>
<td>2.6</td>
<td>6.3</td>
<td>20.0</td>
<td>6.4</td>
<td>7</td>
</tr>
<tr>
<td>KI67-2-85.7 duplicate</td>
<td>4.26</td>
<td>0.87</td>
<td>0.06</td>
<td>0.40</td>
<td>0.03</td>
<td>0.47</td>
<td>0.05</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KI81-2-88.6</td>
<td>2.63</td>
<td>0.74</td>
<td>0.04</td>
<td>0.36</td>
<td>0.03</td>
<td>0.38</td>
<td>0.05</td>
<td>2.4</td>
<td>6.1</td>
<td>18.8</td>
<td>6.1</td>
<td>7</td>
</tr>
<tr>
<td>Puna dacite</td>
<td>5.75</td>
<td>0.77</td>
<td>0.03</td>
<td>0.38</td>
<td>0.03</td>
<td>0.38</td>
<td>0.03</td>
<td>2.29</td>
<td>2.49</td>
<td>-</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>NIST SRM915a</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seawater</td>
<td>1.89</td>
<td>0.04</td>
<td>0.93</td>
<td>0.05</td>
<td>0.07</td>
<td>0.97</td>
<td>0.03</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aMajor element data from Murata and Richter (1966) and Helz et al. (1994), and Puna dacite from Teplow et al. (2009).
bTrace element data from Helz (2012).
cNumber of repeat measurements by TIMS. Multiple measurements of each sample are reported in Table S4.
5. Discussions

5.1. Crystal Fractionation History of Kilauea Iki Lava Lake Magma

In order to quantify the crystal fractionation history of Kilauea Iki lava lake basalts, we applied MELTS_Excel (Gualda & Ghiorso, 2015) to constrain their crystallization history. We used Iki-2 as the starting composition (sample S-4 of Murata & Richter, 1966). It is a sample from the 1959 summit eruption, which formed the Kilauea Iki lava lake (Murata & Richter, 1966), and has a MgO content of 11.50 wt % with ~8 wt % olivine. In our MELTS calculation, pressure was set at 1 bar, and the system was open to oxygen exchange at QFM buffer (Carmichael & Ghiorso, 1986). MELTS calculation shows that the liquidus temperature of the starting composition, Iki-2, is 1,282 °C. The temperature was then decreased at steps of 5 °C. Above 1,175 °C, olivine was the only crystal phase, and it was completely removed from the system in our model calculation. Below 1,175 °C, at a melt MgO of ~7.5 wt %, multiple phases (clinopyroxene, pigeonite, plagioclase, and oxides) crystallized. Starting from this point, the melt composition may not follow the observed trend of samples. In this case, part of the crystallized minerals was not removed, and was assumed to mix with the residual melt to fit the observed major element-major element trend. For samples with MgO higher than 11.50 wt %, the MgO content of Iki-2, Fo86.5 olivine was added to model an olivine accumulation trend. Each step of crystallization was treated as an equilibrium crystallization process. However, the whole process of our model is close to a fractional crystallization process. We also monitored the trace element contents during our model calculation. Specifically, the abundances of a trace element of interest in the melts before and after each crystallization step are expressed as

\[C_2 = \frac{C_1}{f + \sum_{i=1}^{n} D_i f_i} \]

in which \(C_1 \) and \(C_2 \) are the element contents of the melts before and after each crystallization step, respectively. \(f \) and \(f_i \) are the fractions of the melt and crystallizing mineral \(i \), respectively. \(D_i \) is the mineral-melt partition coefficient of mineral \(i \), given in Table S2 (Bennett et al., 2004; Elkins et al., 2008; Higuchi & Nagasawa, 1969; Horn et al., 1994; Keleman & Dunn, 1992; Klemme et al., 2006; Lemarchand et al., 1987; McKenzie & O’Nions, 1991; Nielsen et al., 1992; Paster et al., 1974; Sobolev et al., 1996).

Our model results are reported in Table S5, and shown in Figures 4 and S3, including CaO and Sc contents, Sr/Nd, and the proportions of removed minerals as functions of MgO content. As mentioned above, we forced the major element compositions of the magma + residual minerals to follow the observed Kilauea Iki trend. The good agreement between the modeled trace element contents (Sc and Sr/Nd) of the magma + residual minerals and those observed in Kilauea Iki basalts validates our approach (Figure 4).

The evolution of the CaO content Kilauea Iki lavas can be divided into two stages. In the first stage, CaO content increases with decreasing MgO due to olivine crystallization and accumulation. In the second stage, CaO and Sc contents and Sr/Nd decrease with decreasing MgO content as a consequence of crystallization of
Ca-rich clinopyroxene and plagioclase. This crystallized phase assemblage was observed in Kilauea Iki lavas (Pitcher et al. 2009, Figures 6 and 7).

5.2. Mineral-Melt Ca Isotopic Fractionation Factor Inferred From the Lack of Ca Isotopic Fractionation During Basaltic Magma Differentiation

The overall horizontal MgO-$\delta^{44/40}$Ca trend of Kilauea Iki lavas implies that Ca isotopic fractionation is insignificant during basalt magmatic differentiation at current analytical precision (± 0.07 for $\delta^{44/40}$Ca). We use the MgO-$\delta^{44/40}$Ca trend of Kilauea lavas (Figure 5) to constrain the Ca isotopic fractionation factors between minerals and basaltic melt. Similar to the trace element effects discussed in section 5.1, the melt Ca isotopic compositions before and after each crystallization step can be expressed as

$$\delta^{44/40}\text{Ca}_{\text{melt},i} = \delta^{44/40}\text{Ca}_{\text{melt},i-1} \times \prod_{j} \left(\frac{\delta^{44/40}\text{Ca}_{j}}{\delta^{44/40}\text{Ca}_{j-1}} \right)$$

$$\delta^{44/40}\text{Ca}_{\text{melt},i} = \delta^{44/40}\text{Ca}_{\text{melt},i-1} \times \prod_{j} \left(\frac{\delta^{44/40}\text{Ca}_{j}}{\delta^{44/40}\text{Ca}_{j-1}} \right)$$

$\delta^{44/40}\text{Ca}_{\text{melt},i}$ and $\delta^{44/40}\text{Ca}_{\text{melt},i-1}$ are the Ca isotopic compositions of the melts before and after crystallization, respectively. $\delta^{44/40}\text{Ca}_{i}^{\text{melt}}$ is the Ca-rich clinopyroxene and plagioclase. This crystallized phase assemblage was observed in Kilauea Iki lavas (Pitcher et al. 2009, Figures 6 and 7).

Figure 4. (a) CaO content (%), (b) Sc concentration (ppm), and (c) Sr/Nd versus MgO content (%) for Kilauea Iki lava lake samples (Helz, 2012; Helz et al., 1994; Helz & Taggart, 2010; Murata & Richter, 1966), Puna dacite, and BHVO-1, -2. Red line shows our modeled MELTS calculation result for crystal fractionation of Iki-2 at oxygen fugacity buffered at QFM and 1 bar (Table S5). Blue squares represent the Kilauea Iki lava lake samples used in this study, and gray squares are other Kilauea Iki lava lake samples. (d) Area plot for weight proportions of crystallized minerals removed from the system as a function of MgO content during magma evolution. Green line shows the olivine accumulation trend.

Figure 5. MgO (%) versus $\delta^{44/40}$Ca for Kilauea lavas. Regression line (blue dashed line) with the 95% CI envelope (pink dashed lines) of measured Kilauea Iki lavas are shown. The pale colored lines are MgO-$\delta^{44/40}$Ca evolution model lines from our Monte Carlo simulations. Pale gray lines were calculated using intermineral Ca isotopic fractionation factors from first-principles calculations, and pale yellow lines the ionic model results. See section 5.2 for details.
isotopic composition of mineral i. $f_{\text{melt},2}$ and $f_{i,2}$ are the fractions of melt and crystallized mineral i, respectively, after crystallization. Ca$_{\text{melt},2}$ and CaO$_2$ are the CaO contents of melt and crystallized mineral i, respectively, after crystallization. Three Ca-bearing minerals, clinopyroxene, pigeonite, and plagioclase, are involved during magma evolution at Kilauea Iki (Figure 4d and Table S5). The Ca isotopic fractionation between clinopyroxene and melt is expressed as

$$\Delta^{44/40}\text{Ca}_{\text{cpx-melt}} = \frac{a}{(T/1000)^2}$$

and other mineral-melt fractionation factors can be expressed as

$$\Delta^{44/40}\text{Ca}_{\text{gt-cpx}} = \Delta^{44/40}\text{Ca}_{\text{gt-cpx}}^{\text{cpx-melt}} + \Delta^{44/40}\text{Ca}_{\text{cpx-melt}}$$

$$\Delta^{44/40}\text{Ca}_{\text{gt-melt}} = \Delta^{44/40}\text{Ca}_{\text{gt-cpx}} + \Delta^{44/40}\text{Ca}_{\text{cpx-melt}}$$

The estimated mineral-melt Ca fractionation factors are summarized in Table 3. To the best of our knowledge, they are the first mineral-melt Ca isotopic fractionation factors inferred based on measurements of natural basalts.

5.2.2. Intermineral Fractionation Factors Constrained by an Ionic Model

Under the ionic model described by Young et al. (2015), the intermineral Ca isotopic fractionation is expressed as

$$\Delta^{44/40}\text{Ca}_{\text{melt}} = a/(T/1000)^2$$

where T is the temperature in kelvin.
\[
\Delta^{44/40}\text{Ca}^{A-B} = \frac{1000}{24} \left(\frac{h}{k_B T} \right)^2 \left(\frac{1}{m_{40}} - \frac{1}{m_{44}} \right) \left(\frac{K_{f,A}}{4\pi^2} - \frac{K_{f,B}}{4\pi^2} \right)
\]

(7)

where \(m_{40}\) and \(m_{44}\) are the atomic masses of \(^{40}\text{Ca}\) and \(^{44}\text{Ca}\), respectively; \(k_B\) is the Boltzmann's constant \((1.3805603 \times 10^{-23} \text{m}^2\text{kg/s}^2\text{K})\); \(h\) is the Planck's constant \((6.626070 \times 10^{-34} \text{m}^2\text{kg/s})\); \(T\) is the temperature in kelvin; and \(K_{f,j}\) is treated as electrostatic in origin and expressed as

\[
K_{f,j} = \frac{Z_j Z_o e^2 (1 - n)}{4\pi \varepsilon_0 r_{\text{Ca-O}}^3} \]

(8)

where \(\varepsilon_0\) is the electric constant \((8.85418782 \times 10^{-12} \text{s}^4\text{A}^2/\text{m}^3\text{kg})\), \(e\) is the charge of an electron \((1.60217646 \times 10^{-19} \text{C})\), \(r_{\text{Ca-O}}\) is the mean Ca-O bond length, \(n\) is the exponent in the Born–Mayer formulation for ion repulsion \((n = 12)\), and \(z_i\) is the effective charge of the ion. Using the Ca-O bond lengths summarized in Table 2, we have

\[
\Delta^{44/40}\text{Ca}^{\text{pl-cpx}} = 0.09 \pm 0.07
\]

(11)

At 1,200 °C, \(\Delta^{44/40}\text{Ca}^{\text{cpx-melt}} = 0.04 \pm 0.03\). That is, at magmatic temperature, the Ca isotopic fractionation between basaltic melt and clinopyroxene is very small.

5.3. Implication for Ca Isotopic Fractionation During Peridotite Partial Melting Under 1–2 GPa

Based on the inferred mineral-melt Ca isotopic fractionation factors (section 5.2 and Table 3), as well as additional mineral-mineral Ca isotopic fractionation factors (Wang et al., 2017), we explored Ca isotopic fractionation during partial melting of spinel peridotite. We restricted our exercise to low pressure at 1–2 GPa, because both the mineral and melt structures are sensitive to pressure (e.g., Bajgain et al., 2015; Huang et al., 2014; Wu et al., 2015), and it is unclear whether our inferred mineral-melt Ca isotopic fractionation factors in section 5.2 can be directly applied to high pressure within the garnet stability field.

In order to explore the Ca isotopic effects during different types of partial melting, we have run the following simulations: batch, fractional, and dynamic melting of the primitive mantle (McDonough & Sun, 1995) under 2 GPa. We also ran simulations of batch melting of the depleted MORB mantle (Workman & Hart, 2005) and West Kettle River spinel lherzolite xenolith (Walter, 1998) under 2 GPa to explore possible compositional effects on Ca isotopes. Finally, we ran simulations of batch melting of the primitive mantle under 1 GPa to explore possible pressure effects.

We used the pMELTS program (Ghiorso et al., 2002) to model the fractions and compositions of the melt and coexisting minerals during batch partial melting at low pressure (1–2 GPa). The degree of partial melting ranged from ~5 to ~30%. Oxygen fugacity buffer was set at QFM. The fractions and compositions of the melts and their coexisting minerals are reported in Table S6. \(\delta^{44/40}\text{Ca}\) in batch melt was obtained using mass balance relationship, and are reported in Tables S7 and S8:

\[
\delta^{44/40}\text{Ca}^0 = \frac{\delta^{44/40}\text{Ca}^{\text{melt}} \times F_{\text{melt}} \times \text{CaO}^{\text{melt}} + \sum_{i=1}^{N} \delta^{44/40}\text{Ca}^i \times F_i \times \text{CaO}^i}{F_{\text{melt}} \times \text{CaO}^{\text{melt}} + \sum_{i=1}^{N} F_i \times \text{CaO}^i}
\]

(12)

where \(\delta^{44/40}\text{Ca}^0\) is the mantle Ca isotopic composition (+0.94; Kang et al., 2017). Superscript “melt” and “i” refer to melt and mineral “i”, respectively. \(F\) is the fraction of the melt, and \(F_i\) is the fraction of mineral “i”. CaO represents...
the concentration (wt %). \(N \) is the number of total coexisting minerals. The Ca isotopic composition of bulk residue is calculated as the weighted average of the mineral Ca isotopic compositions (Tables S7 and S8).

We also explored another two partial melting scenarios using primitive mantle as the starting composition under 2 GPa: a fractional melting and a dynamic melting in which 5% melt is trapped with residues. The fractions and compositions of melts and coexisting minerals are reported in Table S6, and their \(\delta^{44/40} \text{Ca} \) are reported in Tables S7 and S8.

Mantle clinopyroxenes have different compositions compared to those fractionated from Kilauea Iki basalts. Mantle clinopyroxenes have CaO of 12–17 wt %, and those fractionated from Kilauea Iki basalts have CaO of 17–20 wt %. This reflects a temperature effect on pyroxene compositions. Kilauea Iki lava lake magma evolved below 1,300 °C, while mantle partial melting occurs above 1,300 °C. Under higher temperatures, orthopyroxene becomes more Ca-rich and clinopyroxene less Ca-rich (e.g., Nickel & Brey, 1984). Wang et al. (2017) reported Ca concentration effect on the reduced partition function ratio of Ca isotopes of clinopyroxene, 1,000 \(\ln^{44/40} \beta_{\text{cpx}} \). When Ca/(Ca + Mg + Fe) is less than 0.5, all Ca atoms occupy the larger eightfold coordinated M2 sites. When Ca/(Ca + Mg + Fe) is greater than 0.5, some Ca atoms have to occupy the smaller sixfold coordinated M1 sites. As a consequence, this leads to variable Ca-O bond length and 1,000 \(\ln^{44/40} \beta_{\text{cpx}} \) (Wang et al., 2017). However, the temperatures associated with mantle melting are above 1,300 °C in our simulations (Table S6). Under such high temperatures, the Ca concentration effect on 1,000 \(\ln^{44/40} \beta_{\text{cpx}} \) is less than 0.03 (Wang et al. 2017, Figure 6). This concentration effect on \(\delta^{44/40} \text{Ca} \) in calculated melts and residues is less than 0.02. Consequently, it is ignored in our simulations.

We simulated Ca isotopic effects during mantle partial melting using mineral-melt fractionation factors obtained by two approaches, which agree within uncertainty (Table 3). The simulated Ca isotopic effects in melts and residues are in Table S7 (for first-principles calculations) and Table S8 (for the ionic model). Since both results agree within uncertainty, we only plot the results from the first-principles calculations (Table S7) in Figure 1, in which they are compared to natural rocks. The important observations include the following:

1. There is negligible effect on the melt \(\delta^{44/40} \text{Ca} \) because most Ca budget is in the melt. In detail, melt \(\delta^{44/40} \text{Ca} \) ranges from 0.89 to 0.93 in all our simulations, including three types of starting materials (primitive and depleted mantle) under 1 and 2 GPa, and three types of partial melting. These values are indistinguishable from the mantle value of 0.94 used in our simulation. Hence, the observed low \(\delta^{44/40} \text{Ca} \) in N-MORB from southern Juan de Fuca ridge (Zhu et al., 2018) may not reflect a partial melting effect.

2. Large \(\delta^{44/40} \text{Ca} \) effects are observed in melting residues. This may explain the heavy Ca isotopic compositions reported in dunites and some peridotites (Amini et al., 2009; Feng et al., 2017; Huang et al., 2010). However, caution must be exercised when applying our results to explain the Ca isotopic compositions in dunites, because many dunites have been described as melt channels instead of large degree partial melting residues (e.g., Kelemen et al., 1992). \(\delta^{44/40} \text{Ca} \) of residues are not sensitive to starting materials or melting pressure, but to partial melting styles. Specifically,
 (a) the maximum \(\delta^{44/40} \text{Ca} \) of residues in batch melting is ~1.1. This basically reflects the Ca isotopic fractionation between orthopyroxene and melt, because at large degrees of batch melting, orthopyroxene is the only Ca-bearing mineral in the residues.
 (b) The \(\delta^{44/40} \text{Ca} \) of residues in fractional melting can reach up to 1.25 at a partial melting degree of 30%, and it will increase further with increasing melting degree.
 (c) The \(\delta^{44/40} \text{Ca} \) versus MgO relationship of residues in dynamic melting mimics that of the fractional melting, but the \(\delta^{44/40} \text{Ca} \) effects are smaller because of the trapped melt. Specifically, at 30% partial melting, residue of dynamic melting has \(\delta^{44/40} \text{Ca} \) of 1.12, compared to 1.25 in fractional melting.

3. Overall, our simulations show that partial melting under 1–2 GPa can produce up to 0.3 \(\delta^{44/40} \text{Ca} \) variation in melts and residues.

6. Conclusions

1. There is no measurable \(^{44}\text{Ca}/^{40}\text{Ca} \) variation (at a level of \(\pm 0.07\% \)) in Kilauea basalts, although some have undergone significant fractionation of Ca-rich minerals, including up to 30% clinopyroxene, 28% plagioclase, and 1.7% pigeonite.
Acknowledgments

This work was supported by the National Nature Science Foundation of China (41673012, 41230209, and 41473003), and National Science Foundation (EAR1144727 and EAR1524387). Y.S.H. and S.H. also acknowledge support from the State Key Laboratory of Geological Processes and Mineral Resources (Open Research Program GPRM201510). We thank Chen Zhou and Zhongjing Wu for discussions and Vincent Salters, Paolo Sossi, Justin Simon, and an anonymous reviewer for their critical, but constructive comments, which significantly improved the manuscript. Finally, we thank Janne Bilcher-Toft for handling our submission. Isotopic data are presented in the main text. Multiple measurements of each sample and model data of MELTS, excel and pMELTS are reported in the supporting information.

References

Geochemistry, Geophysics, Geosystems

10.1029/2018GC007506

